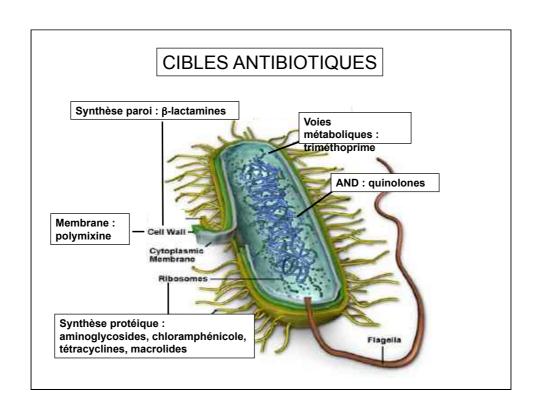
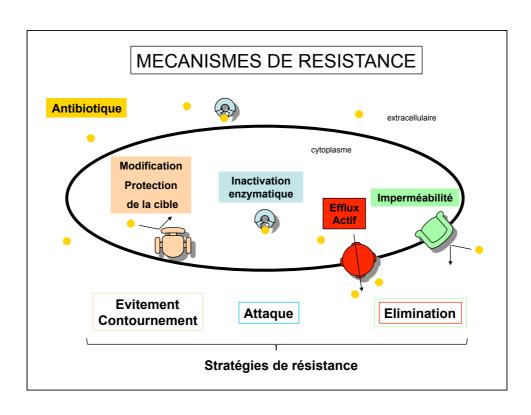
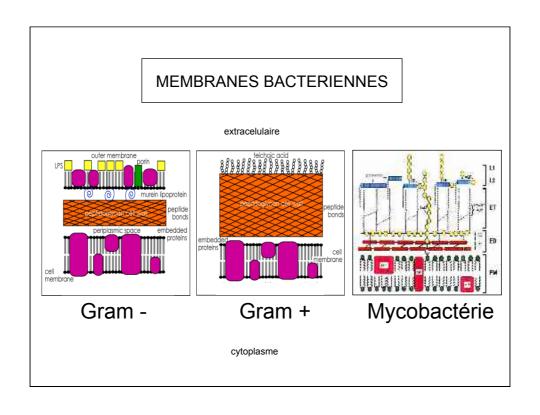


Systèmes d'efflux actifs bactériens : caractérisation et modélisation pour quelles perspectives ?

Julio Aires EA4565

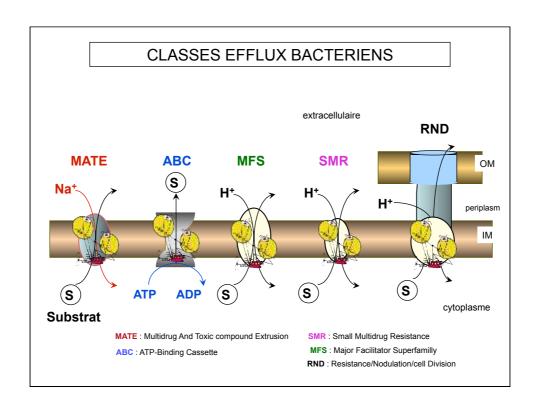

Microbiologie Faculté de Pharmacie


06/10/2011



QUELQUES DATES...

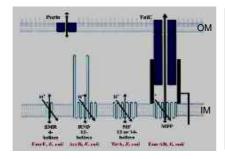
- ❖!Escherichia coli
 - efflux spécifique tétracycline (Levy SB, MCMurry L. 1978. Nature)
 - description de AcrAB-TolC (RND) (Nakamura et al.1978. J.Bact)
- ❖!Staphylococcus aureus : NorA (MFS) (Yoshida et al. 1990. J.Bact) Staphylococcus epidermidis : MsrA (ABC) (Roos et al. 1990. Mol Microbiol)
- ❖!Pseudomonas aeruginosa : MexAB-OprM (RND) (Nikaido H. 1994. Science)
- ❖!Streptococcus pneumoniae: PmrA (MFS) (Gill et al. 1999. AAC)
- ■!Efflux cellules leucémiques résistantes aux anthracyclines (Inaba et al. 1979. Leukemia Cancer Res)

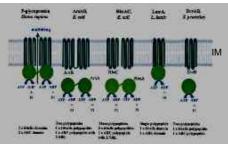


EFFLUX ACTIFS BACTERIENS

- **≻**SOURCE ENERGIE
- >!RELATION PHYLOGENETIQUE
- ➤ SPECIFICITE SUBSTRAT

EFFLUX ACTIFS BACTERIENS


≻SOURCE ENERGIE


>!RELATION PHYLOGENETIQUE

➤ SPECIFICITE SUBSTRAT

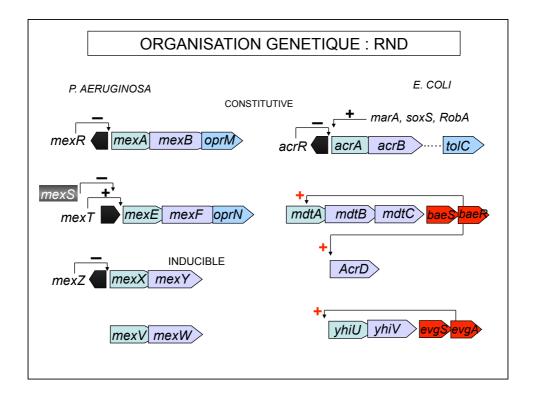
STRUCTURE SECONDAIRE

extracelulaire

cytoplasme

Borges-Walmsley et al. 2003. J. Biochem

EFFLUX ACTIFS BACTERIENS


- **≻SOURCE ENERGIE**
- >!RELATION PHYLOGENETIQUE
- ➤ SPECIFICITE SUBSTRAT

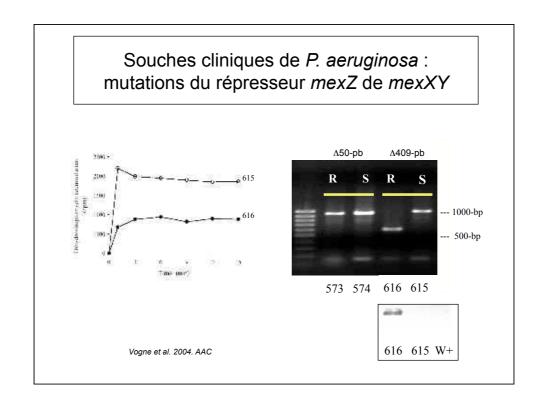
EXEMPLES SUBSTRATS EFFLUX ACTIFS RND

	EFFLUX	SUBSTRATS
sa	MexAB-OprM	Cmp, Fq, Tmp, Tc, ß-Lact*, Nov, Fus, Rif, Sulf, etc
aeruginosa	MexCD-OprJ	Cmp, Fq, Tmp, Tc, Zwitt.C, Ery
eruč	MexEF-OprN	Cmp, Fq, Tmp
a.	MexXY-OprM	Ery, Fq, Tc, Zwitt.C, Aminosides
coli	AcrAB-ToIC	Cmp, Fq, Tc, ß-Lact, Nov, Fus, Rif, Sulf, Etb, Biolysins, Detergents, Dyes,
Щ	AcrD-(ToIC)	Fq, Tc, ß-Lact, Zwitt.C, Aminosides, Nov, Biolysins? Deterge

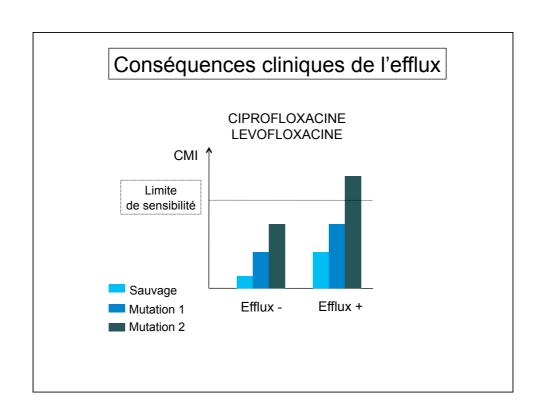
Cmp: chloramphénicole; Fq: fluoroquinolones; Tmp: triméthoprime; Tc: tétracycline; ß-Lact: ß-lactamines; Nov: novobiocine; Fus: acide fusidique; Rif: rifampicine; Sulf: sulfamethoxazole; Zwitt.C: céfépime/céfpirome; Ery: érythromycine; etc: acriflavine, crystal violet, sels biliaires, bromure d'éthidiume, triton X100, SDS, solvants...

* excepté imipénème

Exemple de pompes à efflux pathogènes humains


Pathogène	Efflux	Famille
S. aureus	NorA, NorB, NorC, TetK-L, MdeA MsrA	MFS ABC
L. monocytogenes	MdrL, Lde, TetK-L	MFS
Mycobacterium tuberculosis	Mmr TetK-L DrrB	SMR MFS ABC
Enterococcus spp.	TetK-L, EmeA Lsa	MFS ABC
H. Influenzae	TetB, K AcrB-like	MFS RND
Bambeke F.V. et al. 2003. JAC Li & Nikaido. 2004. Drugs Li & Nikaido. 2009. Drugs		

Exemple de pompes à efflux pathogènes humains


Pathogène	Efflux	Famille
Neisseria gonorrhoeae	MtrD,FarB MacAB	RND MATE
Salmonella spp.	AcrB, MdtBC TetA-D, FloR	RND MFS
E. coli	EmrE YdhE TetA-E, Bcr, MdfA, YceL, EmrB AcrB, AcrD, AcrF, YegN, YhiV	SMR MATE MFS RND
P. aeruginosa	ClmA, TetA,C,E MexB, MexD, MexF, MexK, MexY MexN, MexQ, MexW, TriC	MFS RND RND
Bambeke F.V. et al. 2003. JAC Li & Nikaido. 2004. Drugs Li & Nikaido. 2009. Drugs		

Surexpression	Surexpression de l'efflux chez <i>P. aeruginosa</i>					
	CMI (µg/ml)					
	CAR	CIP	CHL	TET		
PAO1 (sauvage)	64	0.12	64	16		
MexAB-oprM+++	256	0.25	256	64		
mexAB-oprM::kan	0.5	0.03	2	1		
MexCD-oprJ+++	16	1	256	1		
ΔmexCD-oprJ		0.002	1	0.12		
MexEF-oprN+++	0.5	16	0.5	>1024		
MexXY-oprM+++		0.5	512	64		
ΔmexXY-oprM		0.25	8	32		
CLSI						
concentrations critiques	512	4	32	16		

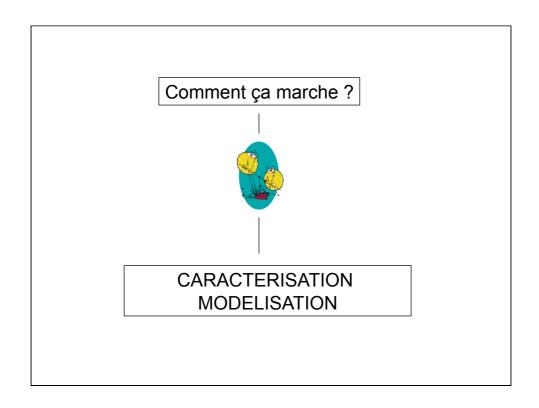
Piddock, 2004, Clin Microbiol Rev

	CMI (µg/ml)			
	NOR	CIP	EtBr	ACR
S. aureus SA-1199 (sauvage)	0.5	0.5		
S. aureus SA-1199 (NorA+++)	16	4		
S. pneumoniae R6 (sauvage)	2	0.5	2	4
S. pneumoniae R6 (PmrA+++)	16	2	16	16
S. pneumoniae R6::cat	2	0.5	2	4
CLSI				
concentrations critiques	16	4		

Doubles Mutants Cible/Efflux

P. aeruginosa

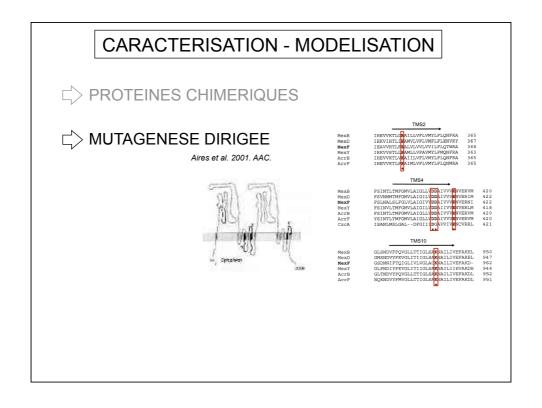
CMI lévofloxacine (µg/ml)


	Type S	MexAB+++
Aucune gyrA (Thr83->lle) gyrA (Thr83->lle) + parC(Ser87->Leu) gyrA (Thr83->lle + Asp87->Tyr) + parC(Ser87->Leu)	0.25 2 4 16	2 8 32 128

Lomovoskaya O. et al. 1999. AAC

IMPACT DE L'EFFLUX SUR LA RESISTANCE CLINIQUE AUX ANTIBIOTIQUES

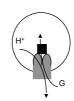
- ➤! Surexpression possible : difficilement détectable en routine car faible augmentation des CMI et favorise l'apparition de résistances par sous estimation des taux de résistance
- >! Systèmes d'efflux peuvent coopérer avec d'autres mécanismes de résistance
- ➤! Expression concomitante de ++ pompes à efflux : résistance haut niveau pour un antibiotique; co-expression de ++ pompes à efflux : multirésistance
- ➤! Augmente le risque de sélection de mutants résistants (diminution de la concentration intracellulaire : survie de la population de souches à sensibilité diminuée)
- ▶!Transférabilité possible par éléments génétiques mobiles
 - ❖!Développement résistance par efflux vis-à-vis des désinfectants : potentiellement problématique au niveau hospitalier


CARACTERISATION - MODELISATION

Exemple des Systèmes RND

- - transport
 - reconnaissance

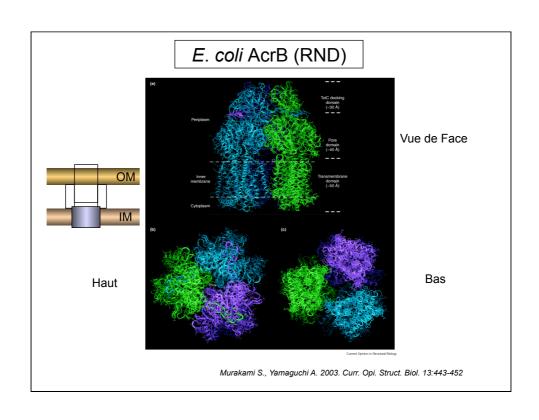
CARACTERISATION - MODELISATION STARTEGIES PROTEINES CHIMERIQUES Elkins et al. 2002. J Bact.

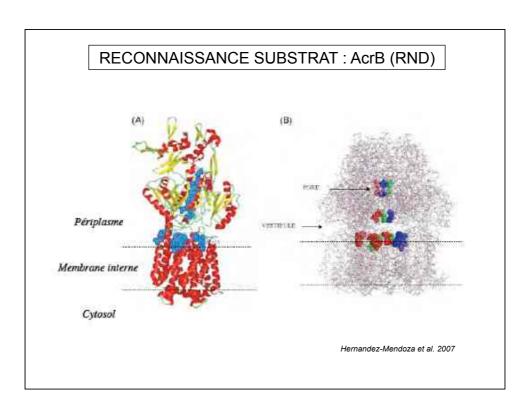

CARACTERISATION - MODELISATION

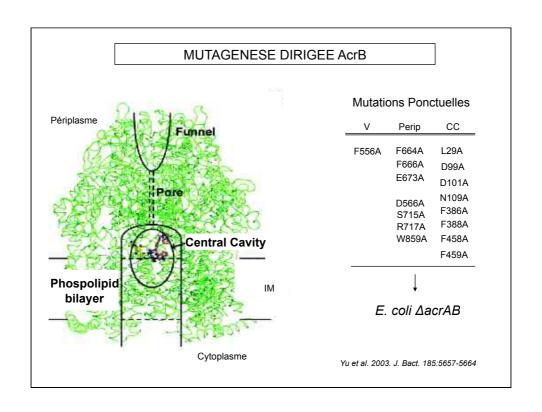
- > PROTEINES CHIMERIQUES

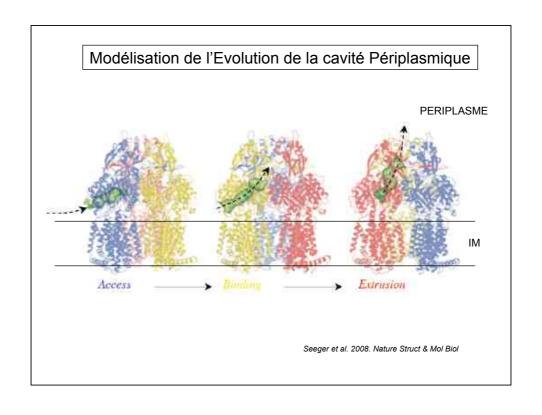
Protéoliposomes

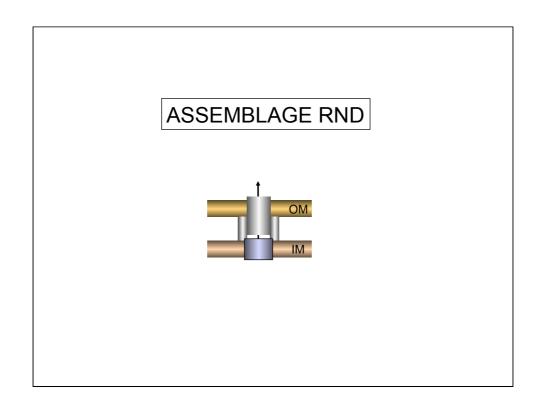
Aires et al. 2004. J. Bact

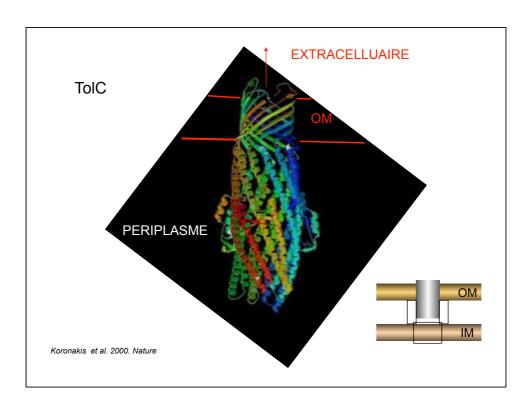


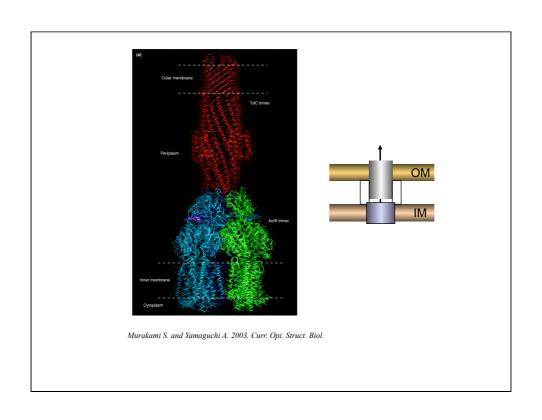


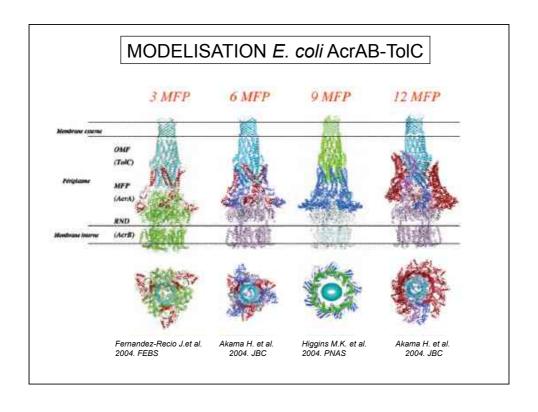

CARACTERISATION - MODELISATION

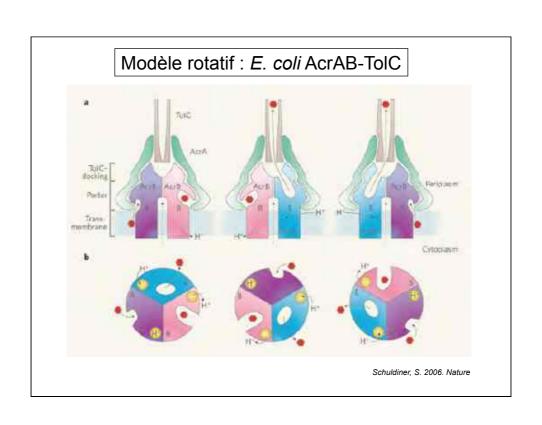

- PROTEINES CHIMERIQUES
- MUTAGENESE DIRIGEE
- MODELISATION IN VITRO
 - □ CRISTALLOGRAPHIE

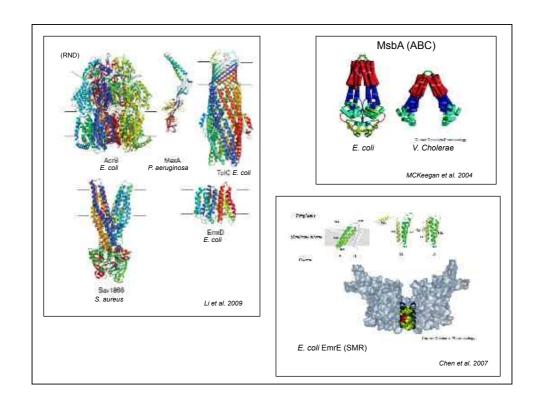


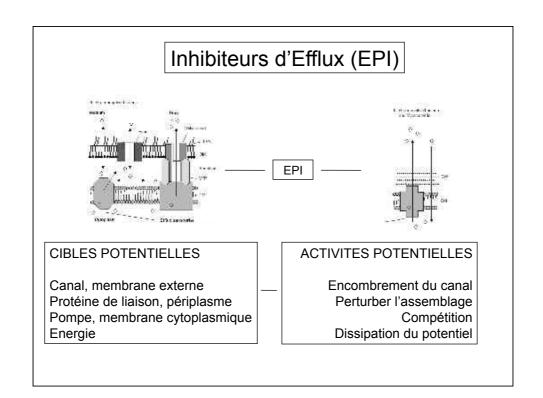








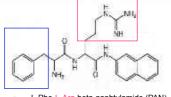




Perspectives?

- -!Absence de nouvelle molécules antibiotiques
- -!Modèle des inhibiteurs des β-lactamases: Inhibiteurs de pompes à efflux (EPI)

Continuer à utiliser les molécules actuelles



- !Inhibiteurs de la composante énergétique : utiles in vitro
 - Inhibiteurs ATPase
 - Inhibiteurs de la force proton motrice (CCCP),
 - Dissipateurs d'énergie (ionophores Nigéricine, Valinomycine)
- !Inhibiteurs de la pompe : potentiellement utiles en thérapeutique
 - Agent hypertenseurs (réserpine)
 - Inhibiteurs des canaux calciques (vérapamil)
 - Certains anti-dépresseurs
 - Inhibiteurs de la P-glycoprotéine...

EPI: STRATEGIES

❖!Criblage de composés synthétiques

- Dérivés peptidiques (Phe-Arg β -naphthylamide (PA β N))
- Benzimidazoles
- Quinoléines
- Arylpipéridines, arylpipérazines

L-Phe-L-Arg-beta-naphtylamide (PAN)

(MicrocidePharmscortics)'s patent compount in W96(53285-A1)

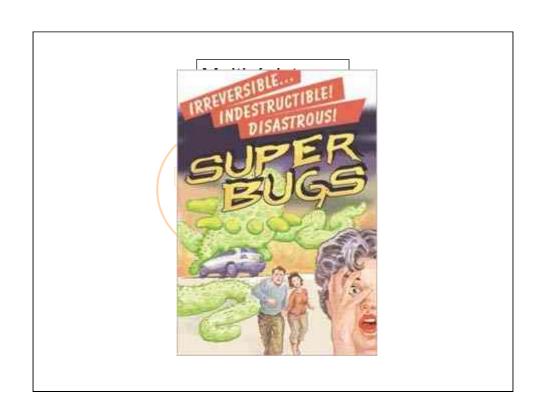
❖!Criblage de composés naturels

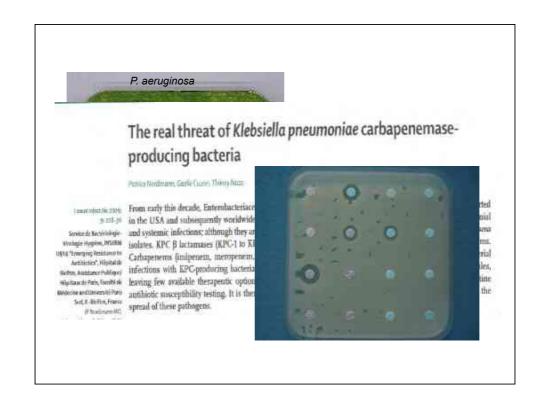
- Extraits de plantes,
- -!Produits de fermentation (actinomycètes)
- -!Insectes...

Doubles Mutants Cible/Efflux

P. aeruginosa

CMI lévofloxacine (µg/ml)


	Type S	MexAB+++	MexAB++ + EPI
Aucune	0.25	2	0.03
gyrA (Thr83->lle)	2	8	0.5
gyrA (Thr83->lle) + parC(Ser87->Leu)	4	32	2
gyrA (Thr83->lle + Asp87->Tyr) + parC(Ser87->Leu)	16	128	8



Lomovoskaya O. et al. 1999. AAC

MECHANISMES RESISTANCE ANTIBIOTIQUES

	g-lacta	ims Aminos	sides Quinolo	nes Macroli	des Tetraci	cline
Inactivation Enzymatique	+	+	(+)	+	+	
Mutation Cible	+	+	+	+	+	
Imperméabilité Paroi	+	+	+	+	+	
Efflux actif	+	+	+	+	+	

Quelles molécules ne sont pas transportées ?

REMERCIEMENTS

Pr. P. Plésiat Laboratoire de Microbiologie CHUR de Besançon France

Pr. JC Pechère, Dr. T. Kohler Dpt. Biologie Cellulaire et Moléculaire Centre Universitaire Médical de Genève Suisse

Pr. H. Nikaido Dpt. Biologie Cellulaire et Moléculaire Université de Californie à Berkeley USA